
UNCLASSIFIED

Defense Technical Information Center
Compilation Part Notice

ADP014155
TITLE: A Data-Centric Infrastructure for Multidisciplinary Analysis
Integration and Management

DISTRIBUTION: Approved for public release, distribution unlimited
Availability: Hard copy only.

This paper is part of the following report:

TITLE: Reduction of Military Vehicle Acquisition Time and Cost through
Advanced Modelling and Virtual Simulation [La reduction des couts et des
delais d'acquisition des vehicules militaires par la modelisation avancee et
la simulation de produit virtuel]

To order the complete compilation report, use: ADA415759

The component part is provided here to allow users access to individually authored sections
of proceedings, annals, symposia, etc. However, the component should be considered within
-he context of the overall compilation report and not as a stand-alone technical report.

The following component part numbers comprise the compilation report:
ADP014142 thru ADP014198

UNCLASSIFIED

10-1

A Data-Centric Infrastructure for Multidisciplinary Analysis
Integration and Management

Jean-Yves Trnpanier Franpis Guibault Benoit Ozell
CERCA (Centre de Recherche en Calcul Appliqu6)

5160 Boul. D6carie, Suite 400
Montr6al, Qu6bec, Canada, H3X2H9

email: firstname.lastname @ cerca.umontreal.ca

Abstract

This paper presents the overall architecture of the VADOR application framework. The
purpose of the VADOR framework is to enable the seamless integration of commercial and in-house
analysis applications in a heterogeneous, distributed computing environment, to allow the
deployment of automatic design optimisation algorithms and to provide a comprehensive data-
management infrastructure for design and analysis data. The emerging database will then provide the
basis of a future knowledge-based engineering system and will allow IT links with other IT systems in
the enterprise. A multi-tiered client-server architecture has been devised, which comprises a client
GUlfor interactive data definition and execution launching, separate data and execution servers, and
autonomous remotely executable application wrappers.

1.0 Introduction

Computational-based design, including computational fluid dynamics (CFD) and
computational structural dynamics (CSD), to name a few, are key technologies in the aerospace
industry and are now part of the daily work of engineers. However, such a highly complex
computational-based design environment, composed of a mix of commercial and "in house" programs
tailored to the specific requirements of the design and analysis tasks, the application of
multidisciplinary analysis and optimisation (MDO) practices faces a number of significant challenges,
including integration, collaboration and data sharing and management. In this context, there is a need
for a software infrastructure which will integrate heterogeneous applications, enable data sharing and
collaboration, and insure proper data management.

In addition to these requirements for MDO applicability, there is currently a broad effort in
organisations to leverage information technologies in order to enhance the access to information at all
levels in the enterprise. Large companies are deploying ERP and PDM systems to better organise
their information. At the technical engineering level, information is often residing in the engineers'
experience and a system which could capture this information could be of a great benefit for the
engineering departments as well as for the enterprise.

These two needs are at the heart of the VADOR (Virtual Airplane Design Optimisation
framewoRk) project, and the specific objectives of the project are:

* To develop a state-of-the-art software framework capable of supporting an MDO paradigm
in a collaborative design environment.
* To develop a comprehensive data-management infrastructure allowing to closely follow the
design data used and shared by the design team and which will provide the basis of future knowledge-
based engineering systems and IT links with other IT systems in the enterprise.

Paper presented at the RTO A VT Symposium on "Reduction of Military Vehicle
Acquisition Time and Cost through Advanced Modelling and Virtual Simulation",

held in Paris, France, 22-25 April 2002, and published in RTO-MP-089.

10-2

2.0 Framework Design and Architecture

The VADOR framework is an object-oriented infrastructure which manages files, groups of files,
programs and processes and maintain a database which stores the links between these basic objects.
The next section presents the main characteristics of the framework.

2.1 Data files

Objects called DataComponent, or DC encapsulate the data files in the framework. An AtomicDC
encapsulates one data file of a given type. The description of more complex groups of files is
performed by allowing user-defined hierarchical composition of DataComponents. The definition of
Composite DataComponent, or CDC, contains a list of AtomicDC types or CompositeDC types. DC's
and CDC's encapsulate the file references (URL) and a large set of attributes required for data
management which are all stored in a relational database.

2.2 Programs and processes

VADOR provides a model for the encapsulation of the programs and processes used to create the data
and provide mechanisms to logically link data and processes at an abstract level. A program, which
can be any piece of software requiring some data files as input and producing some data files as
output, is encapsulated in an object called AtomicStrategyComponent A process, which is an
assembly of programs to be executed in a controlled sequence of operations, is encapsulated in a
CompositeStrategyComponent. Programs and processes are fundamentally defined in relation with
the type of DC that they produce and the type of DC they require as inputs.

2.3 Distributed Architecture

The distributed architecture of the VADOR system is illustrated on Figure 1. The main elements of
the system are: the Graphical User Interface (GUI), the Librarian Server, the Executive Server, the
CPU Servers and the Database Management System (DBMS).

r 1 rcc c ure

Figure 1 The distributed architecture of the VADOR system

10-3

2.4 Graphical User Interface

The VADOR GUI, shown in Figure 2, is a Java program running on the user's machine which
provides an interface between engineers and the VADOR services. VADOR provides two main
classes of services: the first class of services concerns the data and process definition and the tools
registration. This is performed via four different tools called BUILDERS. The second class of
services include data management services, automatic execution of processes and data inspection
tools. These two classes of services are described below.

Flile Ed It VIew tools StI ateg9, HelIpI

VEx.plarerINqewDCInstdrIClear Cipen S~ AýSjYYBui~lt CS9YF-IIld ADCBitlld CD f-i~tll Execute Pause Stop
QhViev Stdey Qview Datdfiles QAViiw Attributes

;V W I -h~ V-~ q41-~ lc II IY'..Ii9,43
W Flex Ie V'I Igý1 cIc yi n 4 3

R ,~S ta,-,Wirg~43

gi StructuralAnali'5is-Wing43 t" 1 --
SAercl-oads-Wing43

SStructural Solution-Wing43
Sstructural Solutioni 1- ng43

5Structural Sout~ion2A 1ig43

2.4.1 n Builderstiooln o aaadpoesdfnto

AocStr cuanateysCmoet scleih Aoisrtg~idrad ssono iue3

separat wuinderolow, caldatheaCom poieSrategy Bufildrist sdtiesrborcessicudnnop

4.Andiffconstuts dalo view ofle the CompositefSraegBuilder, illstgiven on figure 6. Ontis figure aocnsrc

strategy consisting of three sequential programs is modelled, each program having its own inputs and
producing an element of a hierarchical DataComponent shown in a tree view on the left. The
complete strategy is producing a Composite DC.

10-4

E~~~~U~~~rT ahr ft1iw r oWfr i ~ ~ Tas cFlow
........ to w .l...ndii n

y o rotcwr ignt.rif q I towse File ... t

•,,• ~~~ ~OA111,°d.. •,°o,•o
Tlis file cor~tairnsa description, of the flo,,
conditions as required by the transonic flow
solver. C0nfl 9 U I

Dt~st

C 0 nfl9UI u ...~

d dtr nfigur r I...

U~. View ...

Sv cait Ce I_ Save c tCnelI

Figure 3 The Atomic Data Component Builder Figure 4 The Atomic Strategy Builder

a) Composite Type j)Vectur Type If Type

typ N I ItructuralSolution______

~ [Browse File ... j

This type describes the structural solution
struc tu re

NUR•BS-CP•TIM StructuralSolutionl1Srcuaglto

WNingGeornetry Structural Sol ution2 Structural-olution2 7FlowConditions
FI owSol uti on 1

Fl•wSolution2
AeroLoad s
Stru ctu ral Param eters
StructuralSolution 1S•:iru cr-Iral'Soluti O
Fl o•Sol uti on
StructuralSoluti on

$truectu ralAn aly i s
Fl exi blIeWiin gAn alys is

FleibleWin qAn;3lysis Loop

Save Preview Cancel

Figure 5 The Composite Data Component Builder Dialog Box

2.4.2 Data Management, Automatic Execution and Inspection Services

The data management services provided by VADOR includes a data classification layer and an
automatic naming scheme for DataComponents and data files created under the system. A view of
the VadorExplorer, the GUI window giving access to the classification layer, is shown on the figure
below.

10-5

Using the information encapsulated in the DataComponent attributes, VADOR allows users to trace
the upstream history of a given piece of data including the creator of the data, the programs used to
create the data and the input data used. Users can also be informed on the downstream influence of a
given piece of data by asking which data has been produced using a given piece of data as input.
These services results in a comprehensive documentation about data dependencies and data
influences.

Design and analysis work is performed in the system by first selecting the type of data to create in a
user-defined list and then by selecting a strategy to create the data. Only the strategies which have
been defined in the definition phase for the type of data to be created will be presented to the user.
Once the data type and strategies are known, the system will generate a new instance of data, pointing
to empty data files, and will ask the user to complete the definition of input data files to the programs.
Again, files will be requested for various types, as described in the integration phase. After the
selection of input files, the process is ready for execution and the user can select machines where the
programs are to be executed and launch the execution. The control will then be passed to the
executive server until the process execution terminates.

New Fold..,. View DC Open DC L Close

F 'VadorDB & 9 FlexibleWingAnalysisLoopWing43
Sdjanel E FlexibleWingAnalysisWing43
Sdjamnel Fý L FIowSolutionWing43

SIndiayeD FlowSolutionlWing43

T FlexibleWingAnalysisLoop D FlowSolution2_Wing43

jjl F I ex i b I i nAalwsLo r Lj StructuralAnalysisWin g43
" interpolatedWing D AeroLoadsWing43

SNURBSOPTIM c L]StructuralSolutionWing43
S!'Jndiaye D StructuralSolution lWing43
Imahdavi

ijyves D StructuralSolution2_Wing43

Sthen F)Wing GeometryWing43
Sfrancois
J tribes
SbeJncit
jliudaoj

Szhouqun
j anouan

Referring to Figure 2, the upper half of the main window provides a graphical representation of a
DataComponent, where a tree representation is used to display on the left the composition of a
hierarchic DataComponent. The leaves of the tree represent the actual data files and their type can be
easily identified by the corresponding icon. Individual rectangles shown in the right window identify
individual DataComponent, enabling selection and queries to be made on their contents. Utility
programs, defined in the DCBuilder tool, can be invoked from the menu or the mouse in order to edit
or visualise the contents of the encapsulated data files.

The lower half of the main window provides a graphical representation of the StrategyComponent,
where a tree representation is used to display the composition of a hierarchic StrategyComponent.
The complete StrategyComponent is graphically represented by recursively including
StrategyComponent within each other.

10-6

2.5 Librarian Server

The Librarian Server is the central Component server in the VADOR system. The Librarian is
providing services for the handling and archival of Components. The Librarian stores permanently the
components in a relational database using the JDBC driver. Details about the organisation of the
database are given below.

File Edit H-1p

SleFxi bleWingAnalysis

q J FIowSolution
FIo Soluticn 1
FlowSolution2

W Structuralknalys isF

I AeroLo-d -

U StructuralSolution M :.

SStructuralSolutioni
StrucruraS I~t-2nSWingaGometry

P-11lJ1 Sequ~tierma 1 WhiIo fD Whiie F.,r

Figure 6 A view of the Composite Strategy Builder used to define processes

2.6 Executive Server

The Executive is a Java server program that manages the execution of StrategyComponents to create
DataComponents on a distributed network of heterogeneous computers. It answers the needs of
process automation in an heterogeneous distributed environment. The Executive is a multithreaded
server capable of handling multiple tasks. The Executive interacts with the Librarian to retrieve
DataComponents to be created and to update the database contents after execution. The Executive
usually receives simple requests from the GUI to create DataComponents and it communicates with
the Librarian to retrieve the DataComponent object. It traverse the Strategy Tree to generate the data
creation sequence and it communicates with the CPU Servers on different hosts to run the analysis
programs. During the execution process, it notifies the Librarian server after execution of each
program in order to update the status of the components in the database.

2.7 CPU Servers

CPU servers, also called wrappers, are Java server programs waiting for requests on machines where
analysis programs are to be run. The CPU servers wraps any scripts or executable programs on
specific machines. The CPU Servers have the responsibility to run analysis programs with a list of 1/0
files and flags transmitted by the Executive Server. The result of the execution of the programs are
the creation of the data files encapsulated in the DataComponents. The CPU Servers also have the
responsibility to get the input files required for the execution and put the output files to required
locations after execution. File transfers are performed under the control of the CPU Servers using
standard web servers for downloading and uploading files. The analysis programs are usually
executable legacy programs to be executed on a specific machine, or a few machines, on the network.
Note that the execution time required to run these programs can vary from a few milliseconds to
many days, depending on the specific engineering analysis to perform.

10-7

3.0 Process example

A process in the VADOR framework is a controlled sequence of program execution which is used to
produce complex data. Processes are encapsulated in Composite StrategyComponents objects which
are defined by the users using standard elements of structured procedural programming languages:
sequential blocks, parallel blocks, if constructs and controlled loops. The figure shows a typical
process which will be used to illustrate the definition of a Composite StrategyComponent used to
create a Composite DataComponent. In the figure, parallelepipeds indicate files and rectangles
indicate programs.

First, we need to define the data produced by
the process. This is done by defining the A B
Atomic DC types A, B, C, D, E, F, G, H. We
also need to define a composite data type C-
PLUS-D to encapsulate the output of the
program P1. Considering the fact that the A P1
and B types are not part of the process but are
rather inputs to the process, we need to define
a composite DC type C-TO-H containing one
C-PLUS-D, and one E,F,G and H respectively C D
to encapsulate the output of the complete
process. The composite DC type C-TO-H will
encapsulate 6 data files. P2 P3

The process is modelled as a sequential
process composed of three blocks. In the first E F
block of the sequence, the program P1
produces a C-PLUS-D type DC using an A
type DC and a B type DC as input. In the
second block of the sequence, the programs
P2 and P3 are executed in parallel, the P2 e
program producing an E type DC using a C
type DC as input and the program P3
produces an F type DC using a D type DC as
input. The third and last block of the sequence
contains an if construct with its associated P4 P5
True and False branches. The test uses input
data contained in either or both the E and F
DC types to branch. In the FALSE branch, the G H
P4 program produces a G type DC using a E
and a F type DC as input while in the TRUE
branch, the P5 program produces a H type DC using the same input. It is clear that at the end of the
process, either the G or the H type DC will be pointing to a non-existing data file.

Note that there is clear separation in the system between the sequence of execution and the
dependencies. For example, the system allows one to describe a process which will use as input a file
which will be produced later in the process. This provides flexibility in the description of complex
process. However, at execution time, the process may not be able to execute and appropriate
messages will be generated.

4.0 Relational Database

VADOR make use of a standard Database Management System (DBMS) to store and access
information describing the various Components. The DBMS currently used by the framework is the
MySQL DBMS, a publicly available system which stores information using a relational model using
the standard SQL language for database queries. A view of the various tables and their relations is

10-8

reproduced using the UML representation on figure 7. It is important to emphasise that the present
data model separates the engineering data usually contained in data files, from descriptive
information. Only the descriptive information, or metadata, is stored in the relational database. The
users' data files (potentially large files) will usually reside where they have been created by the
application programs.

Devising a schema for a relational data model is not a simple task and the tables contents and their
relations as currently described in figure 4 are the results of a few iterations and will probably require
adjustments in the future. The final schema, or data model, will be one of the main results of the
VADOR project since it defines the core of the system on which everything else is built. It also
defines the information that the system will be able to provide to other IT systems through
appropriate APIs.

4.1 Data and Process Definition Tables

Referring to figure 4, the first table, called the DCDefinition Table stores the definition of Atomic and
Composite DataComponents Types. When the DC type is Composite, the elements of the
composition are listed in the Table DCElements. The DCDefinition table identifies each type of data
in the VADOR system by a unique typelD, known as the Primary Key (PK) of the table and
associates with this typelD a typeName, a typelcon, an IsAtomic field and a Description field. The
typeName is given by the user and is required to be unique. The typelcon refers to an icon file
managed by the system which will be used by the GUI to provide visual recognition of the
DataComponents based on their type, as shown in figure 2. The IsAtomic field allows to distinguish
between Atomic and Composite DC types. The Description field is a string given by the user at the
moment of the type definition which will be later accessible through the GUI for information on
types. Composite DC are defined in the table DCElements. Every element appearing in a composite
DC type has a unique dcElementlD, has a dcElementName, has a ChildID, has a counter and has a
typelD. The typeName should be chosen carefully to match engineering practices and an Icon should
be designed for visual support.

Programs and processes are defined in the table named StrategyDefinition. A relation is present
between the StrategyDefinition Table and the DcDefinition Table, indicating explicitly the DC Type
that the strategy can create. A Composite StrategyComponent is described by its elements stored in
the StrategyElements Table.

The above described four table are the core of the data and process definition in the VADOR
framework. Note that users will not in general need to deal with the database tables but only with the
GUI presented previously.

4.2 MetaData Tables

The central table for metadata storage and management is the Dclnst table which stores instances of
DataComponents. DC Instances encapsulate single data file or groups of data files and attach to these
files metadata information. The table has two fundamental links with the Definition tables. First, the
Dclnst table has a relation with the DcDefinition table in order to uniquely define the type of data
described by the instance. Second, the Dclnst table stores the strategy used to create the data through
a relation with the StrategyDefinition table. The Dclnst table contains general descriptive information
about the instance required for data management. For a composite DC type, the elements instances of
the composition are listed in the DcElementslnst table.

The Dclnst table also has numerous relations with various tables in order to provide additional
information and control on the data. Relations with the DcAccess table enable a flexible control on
access permission to the data on a user base. Relations with the ExternallnputDclnst table allow to
uniquely identify the data used as input to processes and thus provide comprehensive forward and
backward dependencies capabilities. The ExecutionInfo table will store information about the
execution statistics and will enable future deployment of load balancing capabilities. Relations with

10-9

the DcFolder enables the efficient classification of the data based on user's defined projects through
the VADOR Explorer.

5.0 Conclusion and prospective

The object-oriented methodology has been used in the development of a data-centric
framework. The implementation is done using the JAVA computer language. Collaboration and
data-sharing are enabled through the usage of the concept of Components and through data
standardisation. Two kinds of components have been defined: DataComponents and
StrategyComponents. DataComponents encapsulate the design-and-analysis data while
StrategyComponents encapsulate the design-and-analysis workflow. In order to provide data
management capabilities, the components have a set of attributes, including the owner, access
permission, history, comments, status and more. In order to promote standardisation, user defined
data types are introduced, which are then used for validation and documentation. DataComponents
and StrategyComponents are hierarchically arranged, i.e. they may contain other components, giving
the capability to describe the most complex problems. The leaves of this composition are called the
atomic components. The atomic DataComponents encapsulate exactly one data file, while the atomic
StrategyComponents encapsulate one program or script.

The VADOR system results from the assembly of distributed servers, allowing scalability in
a multiple users environment. The Librarian server provides access and storage services for
DataComponents and StrategyComponents. The Executive server controls the execution of sequences
of analysis programs. The CPU servers, or wrappers, run analysis programs. File transfers are
performed via standard Web file servers. A relational database stores data references and attributes as
well as data creation strategies. VADOR uses standard SQL databases for portability.

The current version of the VADOR framework is a flexible and configurable
software, adaptable to the needs of every engineer. It is capable of representing information, including
data and methods, uniformly from the enterprise work flow charts to the detailed engineering tasks. It
allows process execution automation on a distributed network and enables sharing of data and
methods while providing critical information to all users on the location and owner of data and
methods, the methods used to produce the data and the status of data and tasks. The integration of
data and processes into the framework enforces documentation of data formats and methods, and as a
result promotes standardisation.

The VADOR team is currently implementing various additional services in the framework,
including a load monitor and balancing facility, a data register where users can indicate their interests
on specific events related to data or strategies, and the generic implementation of optimisation
strategies. Future directions include a comprehensive support of generic design strategies, including
formal decomposition methodologies for MDO problem formulation and optimisation. Efforts will
also be deployed to define and use standard data descriptions for seamless data exchange between
heterogeneous applications.

10-10

Uti lities
DataFiles Lef
daiatillD Hasl~isi Pro gram "ost

ti~~~~ tyrgrm.sdotiD prsrgramnuiD

us'rseD(FK.1I I tcu!om - -- - rormfoDF)Method os
-tirin Iou atlDFK counte

lsosslD(FK)

typelD lsossClasslD program eol

I < I rog rarninfo utri!D /

ocbefinfii DoIZ~ements Hostblass progromiro0<

typecon I poret 0 f1 r 00K)Stralegy[Iements

typýIDStrategyDefinition
typeDD ter1

Aclmet[metlaot

DClest curID version InputDCDef
AdlD - - tir. cter ustriD po

type 0(0K)- - - - - - - -iription
doem D~lmentslnst deiritl nutri D(FK)

typelD(FK) drrlemeetlestilD ruo~pl
dn~crcoiorl"C tc dn 0 dclmtl(K7
sttnI(FK)Jz~re 1(K
dcomoer parn 0ý 7nD:
s tutus dcl!DfFK) - 7ipiO I

dataFileName core trioD

version - - - - - - - - - - - - nplelt ite o

stDo iputinfoID
"77 7ý-roconStr rD

dco11 / I El omentID(FK)

111D C_ in pu~ er

(Aterator i n p u, DO D- - ruo(F!K)

dclseruocrio - Vector~emenis duID Eeulslf
Jdcl D(FK) uecuorrecnett
strI D(FK) eoecutionlcfolD Stercess -

seuestep~~ ele n"a se D(F!K) in putColD
ttopteput~te clD(FK) curl 7D(F

cr1, progrme os

V~rp odsuorci

-. dcID J ciD D isoyinputTp

OCCommn A-- drH s to ry ID~g
dromeeioDCccress eventtatet

d) ':nKu e net e

dci D(FK))

us-er 0

uýciD

iterlD

ur

Librarian DR
DO~odeefolurioUserList

foiueri(FK(fidenlo foiterNametnDUerru

toiD(FK) isP erect ueiD [7Y ia I
perectFo derc--- -proiD(FK)u... iD
utcrio(FK) ItterEmellr- -tosee

Figure 7 Relational Database Tables and relations

10-11

Paper #10
Discussor's name M. Stevenson
Author J. Y. Trepanier

Q: 1) How is geometry handled in the system?
2) How do you handle computational requirements vs. database complexity?

A: 1) The system is managing files. Geometry files, such as CATIA files, can be referenced
by the system as external input files. Then, specialized translation programs are used to
extract data from CAD files and produce the files required for analysis work. In some cases,
the process of preparation of input files for analysis from the CAD files is manual.
2) The system will store computational requirements for each task performed under the
control of the system based on information gathered during execution. This information will
constitute a rich database enabling the correlation of computational requirements with data
and process attributes. This will then be used to estimate CPU requirements for a given task
and to feed a load balancing facility.

